Fast Charge Sensing of a Cavity-Coupled Double Quantum Dot Using a Josephson Parametric Amplifier
نویسندگان
چکیده
We demonstrate fast readout of a double quantum dot (DQD) that is coupled to a superconducting resonator. Utilizing a parametric amplifier beyond its range of linear amplification, we improve the signalto-noise ratio (SNR) by a factor of 2000 compared to the situation with the parametric amplifier turned off. With an integration time of 400 ns comparable to the inverse effective bandwidth, we achieve a SNR of 76. By measuring the SNR as a function of the integration time, we extract an equivalent charge sensitivity of 8 × 10−5 e= ffiffiffiffiffiffi Hz p . The high SNR allows us to acquire a DQD charge-stability diagram in just 20 ms. At such a high data rate, it is possible to acquire charge-stability diagrams in a live “video mode,” enabling real-time tuning of the DQD confinement potential.
منابع مشابه
Energy states and exchange energy of coupled double quantum dot in a magnetic field
The ground state energies of two interacting electrons confined in a coupled double quantum dot (DQD) presented in a magnetic field has been calculated by solving the relative Hamiltonian using variational and exact diagonalization methods. The singlet-triplet transitions in the angular momentum and spin of the quantum dot ground state had been shown .We have studied the magnetic field versus c...
متن کاملEnergy states and exchange energy of coupled double quantum dot in a magnetic field
The ground state energies of two interacting electrons confined in a coupled double quantum dot (DQD) presented in a magnetic field has been calculated by solving the relative Hamiltonian using variational and exact diagonalization methods. The singlet-triplet transitions in the angular momentum and spin of the quantum dot ground state had been shown .We have studied the magnetic field versus c...
متن کاملBistability in the Electric Current through a Quantum-Dot Capacitively Coupled to a Charge-Qubit
We investigate the electronic transport through a single-level quantum-dot which is capacitively coupled to a charge-qubit. By employing the method of nonequilibrium Green's functions, we calculate the electric current through quantum dot at finite bias voltages. The Green's functions and self-energies of the system are calculated perturbatively and self-consistently to the second order of inte...
متن کاملSignal-to-pump back action and self-oscillation in double-pump Josephson parametric amplifier
We present the theory of a Josephson parametric amplifier employing two-pump sources. Our calculations are based on input-output theory, and can easily be generalized to any coupled system involving parametric interactions. We analyze the operation of the device, taking into account the feedback introduced by the reaction of the signal and noise on the pump power, and in this framework, compute...
متن کاملCavity-coupled double-quantum dot at finite bias: Analogy with lasers and beyond
We present a theoretical and experimental study of photonic and electronic transport properties of a voltage biased InAs semiconductor double quantum dot (DQD) that is dipole coupled to a superconducting transmission line resonator. We obtain the master equation for the reduced density matrix of the coupled system of cavity photons and DQD electrons accounting systematically for both the presen...
متن کامل